Source code for msepy.manifold.predefined.cylinder_channel

# -*- coding: utf-8 -*-
# noinspection PyUnresolvedReferences,PyRedeclaration
r"""
.. testsetup:: *

    import __init__ as ph
    from msepy.manifold.predefined.cylinder_channel import _make_an_illustration
    _make_an_illustration(
        './source/gallery/msepy_domains_and_meshes/msepy/cylinder_channel_2d.png'
    )
    None_or_custom_path = './source/gallery/msepy_domains_and_meshes/msepy/cylinder_channel_example.png'


.. testcleanup::

    pass

The cylinder channel is a mesh (or domain) in :math:`\mathbb{R}^n`, :math:`n\in\left\lbrace2,3\right\rbrace`.
The 2d domain is illustrated in the following figure.

.. figure:: cylinder_channel_2d.png
    :width: 100%

    The illustration of the 2d cylinder channel domain.


.. autofunction:: msepy.manifold.predefined.cylinder_channel.cylinder_channel

Boundary units
==============

The cylinder channel domain is divided into 7 regions. The topology of these regions is illusrated in the
following figure.

.. figure:: cylinder_channel_2d_topology.png
    :width: 100%

    The illustration of the topology of regions in a 2d cylinder channel domain.

Thus, the complete set of boundary units in 2 dimensions is

>>> boundary_units_set = {
...     0: [1, 0, 1, 0],
...     1: [0, 0, 1, 1],
...     2: [0, 1, 1, 0],
...     3: [1, 1, 0, 0],
...     4: [1, 1, 0, 0],
...     5: [1, 0, 0, 1],
...     6: [0, 0, 1, 1],
...     7: [0, 1, 0, 1],
... }

And, for example, if we call the left side the inlet, we can pick up boundary units for the inlet by

>>> boundary_units_inlet = {
...     0: [1, 0, 0, 0],
...     3: [1, 0, 0, 0],
...     5: [1, 0, 0, 0]
... }

The cylinder surface is

>>> boundary_units_inlet = {
...     1: [0, 0, 0, 1],
...     3: [0, 1, 0, 0],
...     4: [1, 0, 0, 0],
...     6: [0, 0, 1, 0]
... }


Examples
========

2d
--

We can generate a mesh in this domain by doing

>>> ph.config.set_embedding_space_dim(2)
>>> manifold = ph.manifold(2)
>>> mesh = ph.mesh(manifold)
>>> msepy, obj = ph.fem.apply('msepy', locals())
>>> manifold = obj['manifold']
>>> mesh = obj['mesh']
>>> msepy.config(manifold)('cylinder_channel')
>>> msepy.config(mesh)(3)  # refining factor, a positive integer.
>>> mesh.visualize(saveto=None_or_custom_path)  # doctest: +ELLIPSIS
<Figure size ...

.. figure:: cylinder_channel_example.png
    :width: 100%

    The cylinder_channel mesh of element factor 3.

Note that we configure the mesh with a factor ``3``. Increasing this factor to refine the mesh.

"""

import sys

if './' not in sys.path:
    sys.path.append('./')

import numpy as np
from msepy.manifold.predefined._helpers import _LinearTransformation, _Transfinite2

import matplotlib.pyplot as plt


def _make_an_illustration(saveto, r=1, dl=10, dr=25, h=6):
    """Make a picture illustrating the domain."""
    fig, ax = plt.subplots(figsize=(8, 6))
    ax.set_aspect('equal')
    ax.spines['top'].set_visible(False)
    ax.spines['right'].set_visible(False)
    ax.spines['left'].set_visible(False)
    ax.spines['bottom'].set_visible(False)
    plt.tick_params(
        axis='both',
        which='both',
        left=False,
        bottom=False,
        labelbottom=False,
        labelleft=False
    )

    x = [-dl, dr, dr, -dl, -dl]
    y = [-h/2, -h/2, h/2, h/2, -h/2]

    angle = np.linspace(0, 2*np.pi, 100)
    rx = r * np.cos(angle)
    ry = r * np.sin(angle)

    plt.plot(x, y, '-k', linewidth=0.8)
    plt.plot(rx, ry, '-k', linewidth=0.8)
    _r = 1.1*dr
    plt.plot([0, _r], [0, 0], '-', linewidth=0.8, color='lightgray')
    _ = 0.05 * h
    plt.plot([_r - _, _r, _r - _], [_, 0, -_], '-', linewidth=0.8, color='lightgray')
    plt.text(_r, 0, r"$x$", c='gray', va='bottom', ha='left')
    _y = 1.4 * h / 2
    plt.plot([0, 0], [0, _y], '-', linewidth=0.8, color='lightgray')
    plt.plot([-_, 0, _], [_y-_, _y, _y-_], '-', linewidth=0.8, color='lightgray')
    plt.text(0, _y, r"$y$", c='gray', va='bottom', ha='left')
    plt.text(0, 0, r"$r$", c='k', va='bottom', ha='left')
    plt.plot([0, r], [0, 0], c='k', linewidth=0.8)
    plt.plot([0, 0], [0, -h/2], c='lightgray', linewidth=0.8)
    plt.text(-dl, 0, r"$h$", va='center', ha='left')
    plt.text(-dl/2, -h/2, r"$d_l$", va='bottom', ha='center')
    plt.text(dr/2, -h/2, r"$d_r$", va='bottom', ha='center')
    plt.savefig(saveto, bbox_inches='tight', dpi=200)
    plt.close()

    fig, ax = plt.subplots(figsize=(8, 6))
    ax.set_aspect('equal')
    ax.spines['top'].set_visible(False)
    ax.spines['right'].set_visible(False)
    ax.spines['left'].set_visible(False)
    ax.spines['bottom'].set_visible(False)
    plt.tick_params(
        axis='both',
        which='both',
        left=False,
        bottom=False,
        labelbottom=False,
        labelleft=False
    )
    plt.plot(x, y, '-k', linewidth=0.8)
    plt.plot([0, _r], [0, 0], '-', linewidth=0.8, color='lightgray')
    _ = 0.05 * h
    plt.plot([_r - _, _r, _r - _], [_, 0, -_], '-', linewidth=0.8, color='lightgray')
    plt.text(_r, 0, r"$x$", c='gray', va='bottom', ha='left')
    _y = 1.4 * h / 2
    plt.plot([0, 0], [0, _y], '-', linewidth=0.8, color='lightgray')
    plt.plot([-_, 0, _], [_y-_, _y, _y-_], '-', linewidth=0.8, color='lightgray')
    plt.text(0, _y, r"$y$", c='gray', va='bottom', ha='left')

    plt.plot([-r, r, r, -r, -r], [-r, -r, r, r, -r], '-k', linewidth=0.8)
    plt.plot([-r, -dl], [-r, -r], '-', linewidth=0.5, color='gray')
    plt.plot([r, dr], [-r, -r], '-', linewidth=0.5, color='gray')
    plt.plot([-r, -dl], [r, r], '-', linewidth=0.5, color='gray')
    plt.plot([r, dr], [r, r], '-', linewidth=0.5, color='gray')
    plt.plot([-r, -r], [-r, -h/2], '-', linewidth=0.5, color='gray')
    plt.plot([-r, -r], [r, h/2], '-', linewidth=0.5, color='gray')
    plt.plot([r, r], [-r, -h/2], '-', linewidth=0.5, color='gray')
    plt.plot([r, r], [r, h/2], '-', linewidth=0.5, color='gray')
    plt.text(-(dl+r)/2, -(h/2+r)/2, r"$r_0$", c='k', va='center', ha='center')
    plt.text(0, -(h/2+r)/2, r"$r_1$", c='k', va='center', ha='center')
    plt.text((dr+r)/2, -(h/2+r)/2, r"$r_2$", c='k', va='center', ha='center')
    plt.text(-(dl+r)/2, 0, r"$r_3$", c='k', va='center', ha='center')
    plt.text((dr+r)/2, 0, r"$r_4$", c='k', va='center', ha='center')
    plt.text(-(dl+r)/2, (h/2+r)/2, r"$r_5$", c='k', va='center', ha='center')
    plt.text(0, (h/2+r)/2, r"$r_6$", c='k', va='center', ha='center')
    plt.text((dr+r)/2, (h/2+r)/2, r"$r_7$", c='k', va='center', ha='center')
    saveto = saveto.split('.png')[0] + rf"_topology.png"
    plt.savefig(saveto, bbox_inches='tight', dpi=200)
    plt.close()


[docs] def cylinder_channel(r=1, dl=8, dr=25, h=6, w=0, periodic=True): r""" Parameters ---------- r : float, default=1 The radius of the cylinder. dl : float, default=8 The :math:`x` distance from the left boundary to the cylinder center. dr : float, default=25 The :math:`x` distance from the right boundary to the cylinder center. h : float, default=6 The height (along :math:`y`-direction, :math:`[-h/2, h/2]`) of the channel; must have :math:`h/2 > r`. w : float, default=0 The width (along :math:`z`-direction, :math:`[-w/2, w/2]`) of the channel. periodic : bool, default=True When the domain is 3d, whether it is periodic along the :math:`z`-axis? It has no affect when ``w=0`` (the domain is 2d). """ raise Exception(r, dl, dr, h, w, periodic)
# noinspection PyPep8Naming class _CylinderChannel(object): r""" ^ y | ______________|______________________________________ | | | |hu _|_ | | / |r\ | |----------| .--|----------------------------------|----------> x | \___/ | |hl | | |______dl_____|__________________dr_________________| hl + hu = h Regions are distributed as: ^ y | __________________________________________ | 5 | 6 | 7 | |_______|__________|_____________________| | 3 / \ 4 | --->x |_______\__________/_____________________| | 0 | 1 | 2 | |_______|__________|_____________________| """ def __init__(self, mf, r=1, dl=8, dr=25, h=6, w=0, periodic=True, hl=None): """ Parameters ---------- mf r dl dr h w periodic : bool Only make sense in 3d. hl : ``hl + hu = h`` if ``hl`` is None, ``hl = 0.5 * h``. Returns ------- """ self._mf = mf self._r = r self._dl = dl self._dr = dr self._h = h self._w = w if hl is None: hl = 0.5 * h else: pass self._hl = hl hu = h - hl self._periodic = periodic assert mf.esd == mf.ndim, f"_cylinder_channel mesh only works for manifold.ndim == embedding space dimensions." assert mf.esd in (2, 3), f"_cylinder_channel mesh only works in 2-, 3-dimensions." esd = mf.esd self._esd = esd if w == 0: assert esd == 2, f"w==0, space must be 2d" else: assert w > 0 and esd == 3, f"w>0, space must be 3d" if esd == 2: region_map = { 0: [None, 1, None, 3], 1: [0, 2, None, None], 2: [1, None, None, 4], 3: [None, None, 0, 5], 4: [None, None, 2, 7], 5: [None, 6, 3, None], 6: [5, 7, None, None], 7: [6, None, 4, None], } elif esd == 3: if periodic: region_map = { 0: [None, 1, None, 3, 0, 0], 1: [0, 2, None, None, 1, 1], 2: [1, None, None, 4, 2, 2], 3: [None, None, 0, 5, 3, 3], 4: [None, None, 2, 7, 4, 4], 5: [None, 6, 3, None, 5, 5], 6: [5, 7, None, None, 6, 6], 7: [6, None, 4, None, 7, 7], } else: region_map = { 0: [None, 1, None, 3, None, None], 1: [0, 2, None, None, None, None], 2: [1, None, None, 4, None, None], 3: [None, None, 0, 5, None, None], 4: [None, None, 2, 7, None, None], 5: [None, 6, 3, None, None, None], 6: [5, 7, None, None, None, None], 7: [6, None, 4, None, None, None], } else: raise Exception() hr = 0.5 * r * np.sqrt(2) if esd == 2: tf1 = _Transfinite2( ['straight line', [(-hr, -hl), (-hr, -hr)]], ['straight line', [(hr, -hl), (hr, -hr)]], ['straight line', [(-hr, -hl), (hr, -hl)]], ['anticlockwise arc', [(0, 0), (-hr, -hr), (hr, -hr)]], ) tf3 = _Transfinite2( ['straight line', [(-dl, -hr), (-dl, hr)]], ['clockwise arc', [(0, 0), (-hr, -hr), (-hr, hr)]], ['straight line', [(-dl, -hr), (-hr, -hr)]], ['straight line', [(-dl, hr), (-hr, hr)]], ) tf4 = _Transfinite2( ['anticlockwise arc', [(0, 0), (hr, -hr), (hr, hr)]], ['straight line', [(dr, -hr), (dr, hr)]], ['straight line', [(hr, -hr), (dr, -hr)]], ['straight line', [(hr, hr), (dr, hr)]], ) tf6 = _Transfinite2( ['straight line', [(-hr, hr), (-hr, hu)]], ['straight line', [(hr, hr), (hr, hu)]], ['clockwise arc', [(0, 0), (-hr, hr), (hr, hr)]], ['straight line', [(-hr, hu), (hr, hu)]], ) rm0 = _LinearTransformation(-dl, -hr, -hl, -hr) rm1 = tf1 rm2 = _LinearTransformation(hr, dr, -hl, -hr) rm3 = tf3 rm4 = tf4 rm5 = _LinearTransformation(-dl, -hr, hr, hu) rm6 = tf6 rm7 = _LinearTransformation(hr, dr, hr, hu) elif esd == 3: raise NotImplementedError() else: raise Exception() mapping_dict = { 0: rm0.mapping, 1: rm1.mapping, 2: rm2.mapping, 3: rm3.mapping, 4: rm4.mapping, 5: rm5.mapping, 6: rm6.mapping, 7: rm7.mapping, } Jacobian_matrix_dict = { 0: rm0.Jacobian_matrix, 1: rm1.Jacobian_matrix, 2: rm2.Jacobian_matrix, 3: rm3.Jacobian_matrix, 4: rm4.Jacobian_matrix, 5: rm5.Jacobian_matrix, 6: rm6.Jacobian_matrix, 7: rm7.Jacobian_matrix, } if esd == 2: mtype_dict = { 0: rm0.mtype, 1: rm1.mtype, # unique region 2: rm2.mtype, 3: rm3.mtype, # unique region 4: rm4.mtype, # unique region 5: rm5.mtype, 6: rm6.mtype, # unique region 7: rm7.mtype, } elif esd == 3: raise NotImplementedError() else: raise Exception() default_element_layout = self._cylinder_channel_default_element_layout self._para = ( region_map, mapping_dict, Jacobian_matrix_dict, mtype_dict, default_element_layout ) def __call__(self, *args, **kwargs): return self._para def _cylinder_channel_default_element_layout(self, characteristic_element_number): """default_element_layout_maker must return a dict indicating the element layouts in all regions. When we config the mesh, if only one number argument is provided, this method will be called to make a default element layout with the only argument being the `characteristic_element_number`. For this mesh, ``characteristic_element_number`` indicating the element number of 1/4 of the cylinder. Thus, around the cylinder, there will be 4 * ``characteristic_element_number`` elements in total. """ assert characteristic_element_number > 0 and characteristic_element_number % 1 == 0, \ f"characteristic_element_number = {characteristic_element_number} is wrong, must be positive integer." arc_length = 2 * np.pi * self._r * 0.25 hr = 0.5 * self._r * np.sqrt(2) c_elements = characteristic_element_number # x-direction of #0, 3, 5 left_elements = int(((self._dl - hr) / arc_length) * characteristic_element_number) + 1 # x-direction of #2, 4, 7 right_elements = int(((self._dr - hr) / arc_length) * characteristic_element_number) + 1 # y-direction of #0, 1, 2, 5, 6, 7 height_elements = int(((self._h/2 - hr) / arc_length) * characteristic_element_number) + 1 if self._esd == 2: pass else: raise NotImplementedError(f"compute z-direction elements.") element_layout = dict() if self._esd == 2: element_layout[0] = [left_elements, height_elements] element_layout[1] = [c_elements, height_elements] element_layout[2] = [right_elements, height_elements] element_layout[3] = [left_elements, c_elements] element_layout[4] = [right_elements, c_elements] element_layout[5] = [left_elements, height_elements] element_layout[6] = [c_elements, height_elements] element_layout[7] = [right_elements, height_elements] else: raise NotImplementedError() return element_layout if __name__ == '__main__': # python msepy/manifold/predefined/cylinder_channel.py # _make_an_illustration('cylinder_channel.png') pass