Source code for msepy.manifold.predefined.crazy

# -*- coding: utf-8 -*-
# noinspection PyUnresolvedReferences,PyRedeclaration
r"""
.. testsetup:: *

    None_or_custom_path_3 = './source/gallery/msepy_domains_and_meshes/msepy/crazy_3d_c.png'
    None_or_custom_path_2 = './source/gallery/msepy_domains_and_meshes/msepy/crazy_2d_c.png'
    import __init__ as ph

.. testcleanup::

    pass


In :math:`\mathbb{R}^n` :math:`(n\in\left\lbrace1,2,3\right\rbrace)`, the crazy domain is
(for *msepy* implementation only) defined in
:math:`\underbrace{[a, b]\times[e, f]\times\cdots}_{n}`,
and :math:`[a, b]`, :math:`[e, f]`, :math:`\cdots` :math:`(a, b, e, f, \cdots \in \mathbb{R})` are the bounds.
The parameters of a crazy domain are

.. autofunction:: msepy.manifold.predefined.crazy.crazy

.. note::

    You may ask that in such a regularly shaped domain why would one use a deformation factor :math:`c>0` to make
    life more difficulty. You are absolutely right. When you surely know what you are doing, you probably will only
    use :math:`c=0`. The meshes of :math:`c>0` are normally for testing, for example, the convergence rate of your
    scheme in bad grids.

Boundary units
--------------

The crazy domain has only one region and its :math:`2\times n` (`n` is the dimensions of the manifold)
faces are all boundary units. They are faces :math:`x^-`, :math:`x^+`, :math:`y^-`, :math:`\cdots`.

Therefore, for a 2-dimensional domain, the complete set of boundary units is

>>> boundary_units_set = {0: [1, 1, 1, 1]}

And for a 3-dimensional one, it is

>>> boundary_units_set = {0: [1, 1, 1, 1, 1, 1]}

For example, ``{0: [1, 0, 0, 1]}`` represents the :math:`x^-` and :math:`y^+` faces of a 2-dimensional
crazy domain. And, for a 3-dimensional crazy domain, ``{0: [1, 0, 0, 1, 1, 1]}`` represents them plus
:math:`z^-` and :math:`z^+` faces.

The mapping transforming the domain
-----------------------------------

We use :math:`\mathbb{R}^3` as an example. Assume the crazy domain is
:math:`\Omega:=(x,y,z)\in[a,b]\times[e,f]\times[g,h]`,
i.e., ``bounds = ([a, b], [e, f], [g, h])``. And let :math:`\mathring{\Omega}:=(r, s, t)\in [0,1]^3` be an orthogonal
domain. The mapping :math:`\Phi` that transforms :math:`\mathring{\Omega}` into :math:`\Omega` is

.. math::
    \begin{pmatrix}
        x\\y\\z
    \end{pmatrix} = \Phi(r,s,t) =
    \begin{pmatrix}
    (b-a)\left(r + \frac{1}{2}c \sin(2\pi r)\sin(2\pi s)\sin(2\pi t)\right) + a\\
    (f-e)\left(s + \frac{1}{2}c \sin(2\pi r)\sin(2\pi s)\sin(2\pi t)\right) + e\\
    (g-h)\left(t + \frac{1}{2}c \sin(2\pi r)\sin(2\pi s)\sin(2\pi t)\right) + h
    \end{pmatrix},


Examples
--------

Below codes generate a crazy domain in :math:`\Omega:=(x,y,z)\in[-1,1]\times[0,2]\times[0,2]\subset\mathbb{R}^3` of
:math:`c=0.15`. A mesh
of :math:`5 * 5 * 5` elements are then generated in the domain ans is shown the following figure.

>>> ph.config.set_embedding_space_dim(3)
>>> manifold = ph.manifold(3)
>>> mesh = ph.mesh(manifold)
>>> msepy, obj = ph.fem.apply('msepy', locals())
>>> manifold = obj['manifold']
>>> mesh = obj['mesh']
>>> msepy.config(manifold)('crazy', c=0.15, periodic=False, bounds=[[-1, 1], [0, 2], [0, 2]])
>>> msepy.config(mesh)([5, 5, 5])
>>> mesh.visualize(saveto=None_or_custom_path_3)  # doctest: +ELLIPSIS
<Figure size ...

.. figure:: crazy_3d_c.png
    :width: 50%

    The crazy mesh in :math:`\Omega=[-1,1]\times[0,2]\times[0,2]` of :math:`5 * 5 * 5` elements
    at deformation factor :math:`c=0.15`.

And, if we want to generate a crazy mesh in domain :math:`\Omega:=(x,y,z)\in[-1,1]\times[0,2]\subset\mathbb{R}^2` of
:math:`7 * 7` elements at :math:`c=0.3`, we can do

>>> ph.config.set_embedding_space_dim(2)
>>> manifold = ph.manifold(2)
>>> mesh = ph.mesh(manifold)
>>> msepy, obj = ph.fem.apply('msepy', locals())
>>> manifold = obj['manifold']
>>> mesh = obj['mesh']
>>> msepy.config(manifold)('crazy', c=0.3, periodic=False, bounds=[[-1, 1], [0, 2]])
>>> msepy.config(mesh)([7, 7])
>>> mesh.visualize(saveto=None_or_custom_path_2)  # doctest: +ELLIPSIS
<Figure size ...

.. figure:: crazy_2d_c.png
    :width: 50%

    The crazy mesh in :math:`\Omega=[-1,1]\times[0,2]\subset\mathbb{R}^2` of :math:`7 * 7` elements
    at deformation factor :math:`c=0.3`.


|

↩️  Back to :ref:`GALLERY-msepy-domains-and-meshes`.

"""

from numpy import sin, pi, cos, ones_like

import warnings
from tools.frozen import Frozen


class CrazyMeshCurvatureWarning(UserWarning):
    pass


[docs] def crazy(bounds=None, c=0, periodic=False): """ Parameters ---------- bounds : list, tuple, None, default=None The bounds of the domain along each axis. When it is ``None``, the code will automatically analyze the manifold and set the ``bounds`` to be :math:`[0,1]^n` where :math:`n` is the dimensions of the space. For example, the unit cube is of ``bounds = ([0, 1], [0, 1], [0, 1])``. c : float, default=0. The deformation factor. ``c`` must be in :math:`[0, 0.3]`. When ``c = 0``, the domain is orthogonal, and when ``c > 0``, the space in the domain is distorted. periodic : bool, default=False It indicates whether the domain is periodic. When it is ``True``, the domain is fully periodic along all axes. And when it is ``False``, the domain is not periodic at all. """ raise Exception(bounds, c, periodic)
def _crazy(mf, bounds=None, c=0, periodic=False): """""" assert mf.esd == mf.ndim, f"crazy mesh only works for manifold.ndim == embedding space dimensions." esd = mf.esd if bounds is None: bounds = [(0, 1) for _ in range(esd)] else: assert len(bounds) == esd, f"bounds={bounds} dimensions wrong." rm0 = _MesPyRegionCrazyMapping(bounds, c, esd) if periodic: region_map = { 0: [0 for _ in range(2 * esd)], # region #0 } else: region_map = { 0: [None for _ in range(2 * esd)], # region #0 } mapping_dict = { 0: rm0.mapping, # region #0 } Jacobian_matrix_dict = { 0: rm0.Jacobian_matrix } if c == 0: mtype = {'indicator': 'Linear', 'parameters': []} for i, lb_ub in enumerate(bounds): xyz = 'xyz'[i] lb, ub = lb_ub d = str(round(ub - lb, 5)) # do this to round off the truncation error. mtype['parameters'].append(xyz + d) else: mtype = None # this is a unique region. Its metric does not like any other. mtype_dict = { 0: mtype } return region_map, mapping_dict, Jacobian_matrix_dict, mtype_dict, None class _MesPyRegionCrazyMapping(Frozen): def __init__(self, bounds, c, esd): for i, bs in enumerate(bounds): assert len(bs) == 2 and all([isinstance(_, (int, float)) for _ in bs]), f"bounds[{i}]={bs} is illegal." lb, up = bs assert lb < up, f"bounds[{i}]={bs} is illegal." assert isinstance(c, (int, float)), f"={c} is illegal, need to be a int or float. Ideally in [0, 0.3]." if not (0 <= c <= 0.3): warnings.warn(f"c={c} is not good. Ideally, c in [0, 0.3].", CrazyMeshCurvatureWarning) self._bounds = bounds self._c = c self._esd = esd self._freeze() def mapping(self, *rst): """ `*rst` be in [0, 1]. """ assert len(rst) == self._esd, f"amount of inputs wrong. {len(rst)} != {self._esd}" if self._esd == 1: r = rst[0] a, b = self._bounds[0] x = (b - a) * (r + 0.5 * self._c * sin(2 * pi * r)) + a return [x] elif self._esd == 2: r, s = rst a, b = self._bounds[0] c, d = self._bounds[1] if self._c == 0: x = (b - a) * r + a y = (d - c) * s + c else: x = (b - a) * (r + 0.5 * self._c * sin(2 * pi * r) * sin(2 * pi * s)) + a y = (d - c) * (s + 0.5 * self._c * sin(2 * pi * r) * sin(2 * pi * s)) + c return x, y elif self._esd == 3: r, s, t = rst a, b = self._bounds[0] c, d = self._bounds[1] e, f = self._bounds[2] if self._c == 0: x = (b - a) * r + a y = (d - c) * s + c z = (f - e) * t + e else: x = (b - a) * (r + 0.5 * self._c * sin(2 * pi * r) * sin(2 * pi * s) * sin(2 * pi * t)) + a y = (d - c) * (s + 0.5 * self._c * sin(2 * pi * r) * sin(2 * pi * s) * sin(2 * pi * t)) + c z = (f - e) * (t + 0.5 * self._c * sin(2 * pi * r) * sin(2 * pi * s) * sin(2 * pi * t)) + e return x, y, z else: raise NotImplementedError() def Jacobian_matrix(self, *rst): """ r, s, t be in [0, 1]. """ assert len(rst) == self._esd, f"amount of inputs wrong." if self._esd == 1: r = rst[0] a, b = self._bounds[0] if self._c == 0: xr = (b - a) * ones_like(r) else: xr = (b - a) + (b - a) * 2 * pi * 0.5 * self._c * cos(2 * pi * r) return [[xr]] elif self._esd == 2: r, s = rst a, b = self._bounds[0] c, d = self._bounds[1] if self._c == 0: xr = (b - a) * ones_like(r) xs = 0 yr = 0 ys = (d - c) * ones_like(r) else: xr = (b - a) + (b - a) * 2 * pi * 0.5 * self._c * cos(2 * pi * r) * sin(2 * pi * s) xs = (b - a) * 2 * pi * 0.5 * self._c * sin(2 * pi * r) * cos(2 * pi * s) yr = (d - c) * 2 * pi * 0.5 * self._c * cos(2 * pi * r) * sin(2 * pi * s) ys = (d - c) + (d - c) * 2 * pi * 0.5 * self._c * sin(2 * pi * r) * cos(2 * pi * s) return ((xr, xs), (yr, ys)) elif self._esd == 3: r, s, t = rst a, b = self._bounds[0] c, d = self._bounds[1] e, f = self._bounds[2] if self._c == 0: xr = (b - a) * ones_like(r) xs = 0 # np.zeros_like(r) xt = 0 yr = 0 ys = (d - c) * ones_like(r) yt = 0 zr = 0 zs = 0 zt = (f - e) * ones_like(r) else: xr = (b - a) + (b - a) * 2 * pi * 0.5 * self._c * cos(2 * pi * r) * sin(2 * pi * s) * sin( 2 * pi * t) xs = (b - a) * 2 * pi * 0.5 * self._c * sin(2 * pi * r) * cos(2 * pi * s) * sin( 2 * pi * t) xt = (b - a) * 2 * pi * 0.5 * self._c * sin(2 * pi * r) * sin(2 * pi * s) * cos( 2 * pi * t) yr = (d - c) * 2 * pi * 0.5 * self._c * cos(2 * pi * r) * sin(2 * pi * s) * sin( 2 * pi * t) ys = (d - c) + (d - c) * 2 * pi * 0.5 * self._c * sin(2 * pi * r) * cos(2 * pi * s) * sin( 2 * pi * t) yt = (d - c) * 2 * pi * 0.5 * self._c * sin(2 * pi * r) * sin(2 * pi * s) * cos( 2 * pi * t) zr = (f - e) * 2 * pi * 0.5 * self._c * cos(2 * pi * r) * sin(2 * pi * s) * sin( 2 * pi * t) zs = (f - e) * 2 * pi * 0.5 * self._c * sin(2 * pi * r) * cos(2 * pi * s) * sin( 2 * pi * t) zt = (f - e) + (f - e) * 2 * pi * 0.5 * self._c * sin(2 * pi * r) * sin(2 * pi * s) * cos( 2 * pi * t) return [(xr, xs, xt), (yr, ys, yt), (zr, zs, zt)] if __name__ == '__main__': # python msepy/manifold/predefined/crazy.py import doctest doctest.testmod()